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: : “*Founded in 1937 by Professor Vilho
Vaisala : History Vaisala

+*World leader in environmental
measurement

“*Headquarters in Helsinki, Finland,;
offices in Bangalore, Delhi, Seattle,
Boulder and Boston

“*Acquired 3TIER in December 2013
%2016 net sales: €319M

g P4 W 1500 employees

@ S“O LIRM

18 GW of contract globally for
forecasting services

“*Digital Services division has
extensive experience in
»Wind and Solar Power Forecasting
»Hydro Streamflow forecasting
» Solar and Wind Resource Assessment
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Outline

¢ Forecasting Horizon v/s Technology
*» Vaisala — Science
»Day ahead — Mixed Hybrid Model
»Hour ahead- Statistical Model
*» Vaisala- Approach

*+ Accuracy of Forecasting
»Vaisala's Experience over years
»Vaisala’s India Experience

» Recommendations
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Forecast Horizons Dictate Technology

ling
Oscillation E| Nino Southern Oscillation

Pacific Decadal Oscillation

Accuracy

Short-range Medium-range Long-range
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Advanced Hybrid Forecast System

Site Specific Historical X3 QUlte Comp|eX|
Observation
% Use of multiple NWP

Proprietary Statistical

Numerical ek models
Regional Weather Data Weather

Bradiction “* Proprietary machine

b (NWP) learning statistical
Enri algorithms for day ahead

forecasting

Global Weather Data

:::az:::::r % Predict power directly or

e indirectly using wind speed
% On-site observations key to

ey D Al removing the bias in NWP
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Vaisala’s Approach

* Use the best, state-of-the-art, NWP models.
“» Use Open-Source statistical packages

» Use ensemble of models to minimize forecast error
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Why use Phy./Stat. Hybrid Approach?

+» Takes advantage of the value in both physical and statistical models
» Physical Models

v" model parameterizations are empirically derived (e.g., cloud and radiative
processes)

v" Atmospheric physics feedback incorporated
v Physically consistent forecast solution for 7 days!

» Statistical Models
v Very quick to run (order of seconds)

v' Can capture short term variability (forecasts less than 2-3 hours on 15-min or shorter
scale)

v" Many different algorithms are now available Open Source (e.g., Octave, R CARET,
Python scikit-learn)

% Shorter training history.

*» Forecast errors can be minimized
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Importance of real time observation

<*Realtime observations Impact of Realtime Observations on Forecast Horizon
Impact first 0-6 hours of 04

forecasts

e==3TIER with Obs  ===3TIER without Obs ===Persistence

o
w
o

e
o

*»Persistence is a good
forecast as forecast horizon
approaching now
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“*Relative improvement of
advanced forecast system
at 1.5 hours ahead:
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Output

* The Vaisala Forecast Time Series is actually a combination of an
Hour Ahead and Day Ahead forecast.

Multiforecast
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Actual v/s Forecast

Maharashtra Wind Site
2 hours ahead forecast and cbservation
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Forecasting Experience & Accuracy
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Global Wind Forecasting Experience

Global Site Specific MW Currently Forecasting For: 18 GW
Global Regional Scale MW Currently Forecasting For: 250 GW

*New countries include Indonesia, Vietham, Pakistan, Finland, Mexico, Honduras, Poland
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How has the Vaisala forecast
Improved over the years?
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Halving the error in a decade! Advances in computing, modeling, and machine

learning methods continue to provide incremental error reduction
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Factors affecting Forecast Accuracy

** 1.5 — 3 hour forecast horizons dependent on good observation predictors

% Send forecast provider Sub station Power Data instead of SCADA data of
Turbines

“* Turbine availability and nacelle wind speed useful for constrained /
curtailed wind farms

*» Detalls are important!
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Is It harder to forecast in India?

**Yes : In some regions, (e.g., Tamil Nadu)

“*No : In some regions (e.g., Gujarat)

Some Regions of India harder to forecast (e.g., Tamil Nadu) than others (e.g., Gujarat). Main
problem affecting short term forecast accuracy is late or poor quality realtime data feeds!
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Recommendations

* Frequency of Forecasting

» Reduced forecast horizons (ex ; reduction of current 1.5 hours ahead) results in
smaller forecast error

*» Geographic Diversity
» Forecast errors reduced when pooling many wind farms that are geographically
diverse

*» Grid Modernization, Telemetry, and modern meters
» Older wind farms to be upgraded

+ Continued reduction of forecast pricing may standstill accuracy
Improvements
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Thank You
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Current state-of-the-art in Wind Power
Forecasting

Days Ahead — Hybrid Physical/Statistical
Modeling
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Hour-Ahead Statistical Modeling

“»State of the practice:

»Common Industry Technigues
v'Autoregressive statistical models and
supervised machine learning
techniques
v'Blending with short-term NWP model
output
v'Adaptive predictor selection for large
iInput data sets (including off-site
[ ] meteorological observations)
v"Multiple or regime-switching models

> Trained to minimize bulk errors for
average power over target forecast
intervals

HOUR-AHEAD

FORECAST -
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Days-Ahead — Hybrid
Statistical/Physical Modeling

% Covers hours 6+ out to 10 days.

% Updates every time a new NWP model comes

Horizontal Grid

In. (Latitude-Longitude)
% Physical Numerical Weather Prediction (NWP) S
models serve as the foundation of the forecasts (eightorProssur) |~

>

Statistical Models used to reduce bhias and error
iIn NWP forecast output

» Statistical models need longer term historical
onsite observations to calibrate NWP model
forecasts

» Historical data has profound impact on forecast
performance (e.g., training only on India monsoon
season will bias high the winter forecasts)
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Physical Modeling Advantages /
Disadantages

% Physical Model Advantages:

» Physical models are, in fact, hybrid models
v" model parameterizations are empirically derived (e.g., cloud and radiative
processes)

» Atmospheric physics feedback incorporated
» Physically consistent forecast solution with value out to 7 days!

% Physical Model Disadvantages:
» most global scale models update only 2 or 4 times per day
» not optimized for subhourly processes (e.g., 15-minute scales)

» Model improvement scorecard NOT validated against hub height (80m or 100m)
observations as there are so few publicly available

> Biases at wind plant locations exist
» More expensive to run internally (expertise required)
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Statistical Modeling
Advantages/Disadvantages?

+» Statistical Model Advantages:
» Very quick to run (order of seconds)
» Can capture short term variability (forecasts less than 2-3 hours on 15-min or shorter scale)

» Many different algorithms are now available Open Source (e.g., Octave, R CARET, Python scikit-
learn)

» Doesn’t take an advanced-degreed atmospheric scientist to develop and apply

» Machine Learning, Big Data, Al is advancing much faster than physical modeling of renewable
power forecasting

+» Statistical Model Disadvantages:
» Most models skillful with longer history (1-year+) to train on
» Forecast performance generally inferior to physical models beyond 6 hours
» Forecast skill degrades precipitously in the absence of realtime observations
» Forecast skill degrades without the use of physical model forecasts as input predictors
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Importance of Observations to Short Term
Forecasting Accuracy and Error Reduction
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Which NWP models have the best

skill?
Anomaly Correl: HGT P500 G2/NHX 00Z, fhi20

5
____GFS 0.899 31 * e. CFSR 0.843 31
074 .. ... ECM 0.926 31 <«— Euro modelis the best!

. CMC 0.882 31

..4+.. FNO 0.871 29 _
e UEM 0w11 a1 <+ UK Met model is second
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0 Verification Date e

Page 24 © Vaisala 1/22/2018 SECONDW]ND | (S\B Bz‘ldiﬁ | VAISALA

by Vaisala




Seasonal Forecasting
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Seasonal Forecasting

 Example display of Seasonal Forecasting

Spatial Forecast Anomaly Maps Point Anomaly Year-Ahead Guidance
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Seasonal Forecasting

Important for budget setting and updating wind resource assessment (e.g.,
P50, P90)
Uncertainty larger at longer forecast horizons
= Instead of forecasting 15-minute blocks -> monthly blocks to reduce the
uncertainty

Climate Indices are most useful predictors at these longer time scales
= EI-Nino Southern Oscillation (ENSO)
= Indian Ocean Dipole Mode Index (I0D) )

Sample size of previous year observations usually small
= statistical re-sampling techniques necessary
= forecast re-analysis record extension beneficial to capture climate variability

Probability Forecasts are best expression of uncertainty associated with
months-ahead forecasts
Analog historical guidance can be useful as well

Forecasts of wind anomalies must be accompanied by an update to the
historical context (baseline climatology) at these long time scales
- . S RN A
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Monthly Portfolio Reporting Services

ProjectX: Climatology, Recent Years & Seasonal Forecast
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Wind reconciliation and seasonal
forecasting

+» Deliverables

»Monthly and quarterly updates for
v Hourly hub height wind speed
v Hourly wind distribution in 0.5 m/s binned histogram
v P25, P50, and P75 Wind Production Index (WPI) for previous
month

»Monthly and quarterly reports
v Boxplot of 35-year climatological distribution of WPI and actuals
v Forecast distribution (P25, P50, P75) or WPI for next 12
months
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